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In the letter the polarization properties of quasi-homogenous (QH) beam propagating in Kolmogorov and
non-Kolmogorov turbulence are studied. The results show that the polarization properties of QH beam
undergoes three stages during the propagation in turbulence: in the “near field”, the degree of polarization
(Dop) and the state of polarization (Sop) fluctuate with source parameters and transverse position; after
that the beam come to the “middle field” where its properties are affected by source parameters and
turbulence perturbation; in the final “far field”, the values come to constants which dependent only on
source parameters.
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The beams generated by quasi-homogenous (QH)
sources[1] are important models which have been stud-
ied and used widely today. The coherence and polar-
ization properties of QH beam have been solved by Ko-
rotkova et al.

[2]. Roychowdhury et al. found the invari-
ance of spectrum of light generated by QH sources[3].
On the other hand, more and more work has been car-
ried out on the beam propagation in turbulence recently.
For example, the spreading and changes of the degree
of coherence of partially coherent electromagnetic Gaus-
sian Schell-model (EGSM) beam in atmosphere turbu-
lence have been studied by Gburet al.

[4,5]. Not long ago,
Wolf[6]pointed out the uniform theory of coherence and
polarization, and the Stokes parameters were generalized
from on-point quantities to two-point counterparts by
Korotkova et al.

[7]. After that it is more convenient to
study the polarization properties of the beam propaga-
tion in random media[8−10]. In this letter, we find the
“fluctuation” region and “stable” region of polarization
properties of QH beams during the propagation. The
variations of ellipses of the state of polarization (SOP) of
such beams along the z-axis under different turbulence
conditions are plotted and analyzed.

The beams generated by QH sources mean the spec-
tral density S0(r) varies much more slowly with the po-

sition vector r than the correlation coefficients µ
(0)
ij (r, ω)

change with the difference of position vectors r1 − r2
[1,2].

So the cross spectral density of QH beams can be ex-
pressed as

W(0) = W
(0)
ij (r1, r2, ω)

= αijS
(0) [(r1 + r2)/2, ω]µ

(0)
ij (r1 − r2, ω) , (1)

where the superscript (0) denotes quantities pertaining
to the incident field. The spectral density can be ex-

pressed as the trace of cross spectral density matrix:
S(0) (r, ω) = TrW(0) (r1, r2, ω), and αij depends only
on frequency:

αij =





1

1 + α
when i = j = x

α

1 + α
when i = j = y

√
α

1 + α
when i 6= j

. (2)

Without loss of generality, Gaussian-Schell model is
used to describe the spectral density and correlation
coefficients:

S(0) (r, ω) = A exp
(
−r2

/
2σ2

)
, (3)

µ(r1, r2, ω) = Bij exp

[
(r1 − r2)2

2δ2ij

]
, (4)

where A,Bij , σ, δij are parameters independent of posi-
tion but depend on frequency, Bij represents the width
of the source, and δij represents the coherent width of
source. Several conditions of the source must be satisfied
in order to produce physical reliable QH beam[2,11].

The cross-spectral density matrix of beam propaga-
tion through turbulence can be derived by the extended
Huygens-Fresnel principle:

Wij(ρ1,ρ2, z;ω) =
k2

4π2z2

∫∫
d2r1

∫∫
d2

r2W
(0)
ij

(r1, r2, ω) exp

[
−ik

(ρ1 − r1)2 − (ρ2 − r2)
2

2z

]

〈exp[ψ∗(ρ1, r1) + ψ(ρ2, r2)]〉m , (5)

where r1, r2 are the position vectors of two points on the
source plane, ρ1, ρ2 are two position vectors observation
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points on the receive plane, z is the propagation distance,

and k =
2π

λ
is the wave number of the beam. The last

term describes the correlation function of complex phase
perturbed by random media. The subscript m denotes
the average over medium realization. Φn(κ) is the spatial
spectral degree of refractive index fluctuations which tra-

ditionally described by Kolmogorov model, but the data
from recent experiments in some portions of atmosphere
such as free troposphere and stratosphere has shown sig-
nificant deviations from this model, so non-Kolmogorov
model was established to describe the turbulence in these
parts of atmosphere.

〈exp[ψ∗(ρ1, r1) + ψ(ρ2, r2)]〉m = exp



−1

3
π2k2z

∞∫

0

κ3
Φn(κ)dκ[(ρ1 − ρ2)2 + (r1 − r2)(ρ1 − ρ2) + (r1 −r2)2]



 . (6)

For Kolmogorov model, the power spectrum is the
function of refractive-index structure parameter C2

n:

Φn(κ) = 0.033C2
nκ

−11/3. (7)

For non-Kolmogorov model:

Φn(κ, α) = A(α)C̃2
n

1

(κ2 + κ2
0)

α
2

exp

(
− κ2

κ2
m

)

(0 < κ <∞, 3 < α < 4), (8)

where α is the power law, and C̃2
n is the generalized

refractive-index structure parameter which has the unit

of m3−α; κ0 = 2π
L0

, κm = c(α)
l0

, L0 and l0 are the out scale
and inner scale of turbulence. A(α) and c(α) are defined
as

A(α) =
1

4π2
Γ(α− 1) cos

(απ
2

)
,

c(α) =

[
Γ

(
5 − α

2

)
A(α)

2π

3

] 1

α−5

. (9)

From Eq. (6), we set H =
1

3
π2k2z

∞∫
0

κ3
Φn(κ)dκ as a

quantity to describe the strength of turbulence perturba-
tion:

H = 0.49
(
C2

n

)6/5
k12/5z6/5 (Kolmogorov model),

(10)

H =
π2k2z

6(α− 2)
A(α)C̃2

nΓ

(
2 − α

2
,
κ2

0

κ2
m

)

×
{
− 2κ

(4−α)
0 + exp

(
κ2

0

κ2
m

)
κ(2−α)

m [(α− 2)κ2
m + 2κ2

0]
}

(non-Kolmogorov model) (11)

In the letter, we set the C2
n = 10−13m−2/3 for Kol-

mogorov turbulence and C̃2
n = 10−13m3−α for non-

Kolmogorov model.
It has been known that the spectral density, the de-

gree of coherence and the degree of polarization (DOP)
of a random electromagnetic beam may change on prop-
agation. The polarization invariant properties of beam
propagation were studied in 2007[16]. The far-zone be-
havior of DOP of electromagnetic beams in turbulence

has been explored[17]. Since the non-Kolmogorov turbu-
lence model has been introduced, some papers worked
on the properties of beams propagating through this
turbulence[18,19]. However, the change of the SOP, i.e.,
the size, the shape, and the orientation of the polariza-
tion ellipse of the polarized portion of the QH beam on
propagation has not been investigated up to now. In
the letter we study such changes of QH beams travel
through different turbulence models. From Eq. (3) the
cross spectral density matrix of the electromagnetic field
on the receive plane can be written as

Wij(ρ1,ρ2, z;ω) =
k2

4π2z2

∫∫
d2r1

∫∫
d2r2

S(0) [(r1 + r2)/2, ω]µ
(0)
ij (r1 − r2, ω)

exp
{
−H(α, z)[(ρ1−ρ2)2+(r1−r2)(ρ1−ρ2)+(r1−r2)2]

}

exp

[
−ik

(ρ1 − r1)2 − (ρ2 − r2)2

2z

]
. (12)

As a matter of convenience, we make changes of the
spatial arguments:

r+ = (r1 + r2) /2, ρ
+ = (ρ1 + ρ2)/2,

r− = r1 − r2, ρ
− = ρ1 − ρ2. (13)

With the help of Eq. (13), the cross spectral density
matrix on the receive plane is derived as

Wij(ρ1,ρ2, z;ω)=
k2σ2αijABij

2z2Mij
exp

[(
N

Mij
−1

)
ki

z
ρ
−
ρ

+

]

exp
{ [

N2

Mij
− k2σ2

2z2
−H(α, z)

]
ρ
−2 − k2

4z2Mij
ρ

+2
}
,

(14)

whereMij = 1
2δ2

ij

+H(α, z)+ k2σ2

2z2 ; N = (k2σ2

2z2 −H(α,z)
2 ).

The general stokes parameters are introduced to
study the changes of polarization changes. They also
can determine other coherence properties of the beam
propagation in any linear medium:

S0(ρ1,ρ2, ω) = Wxx(ρ1,ρ2, ω) +Wyy(ρ1,ρ2, ω);

S1(ρ1,ρ2, ω) = Wxx(ρ1,ρ2, ω) −Wyy(ρ1,ρ2, ω);

S2(ρ1,ρ2, ω) = Wxy(ρ1,ρ2, ω) +Wyx(ρ1,ρ2, ω);

S3(ρ1,ρ2, ω) = −i[Wyx(ρ1,ρ2, ω) −Wxy(ρ1,ρ2, ω)].
(15)
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If we only considered polarization properties of one point,
ie., ρ1 = ρ2 = ρ, Eq. (14) is simplified to

Wij(ρ, z, ω) =
k2σ2αijABij

2z2Mij
exp

{
− k2

4z2Mij
ρ

2
}
. (16)

Substituting Eq. (16) into Eq. (15), the analytical ex-
pressions of four generalized stokes parameters could be
expressed as

S0(ρ, z, ω) =
Ak2σ2

2z2

[
αxx

Mxx
exp

(
− k2

4z2Mxx
ρ

2

)

+
αyy

Myy
exp

(
− k2

4z2Myy
ρ

2

)]
;

S1(ρ, z, ω) =
Ak2σ2

2z2

[
αxx

Mxx
exp

(
− k2

4z2Mxx
ρ

2

)

− αyy

Myy
exp

(
− k2

4z2Myy
ρ

2

)]
;

S2(ρ, z, ω) =
Ak2σ2αxy

2z2Mxy[
exp

(
− k2

4z2Mxx
ρ

2

)
(Bxy +Byx)

]
;

S3(ρ, z, ω) =
−i∗Ak2σ2αxy

2z2Mxy[
exp

(
− k2

4z2Mxy
ρ

2

)
(Bxy −Byx)

]
.

(17)

From the conditions what we have mentioned above,
we set A = 1.5, other parameters of the source are
set as: Bxy = 0.25 exp(iπ

6 ), Byx = 0.25 exp(−iπ
6 ),

λ = 0.6328 µm, σ = 1 cm, δxx = 0.4 mm, δxy = 0.2
mm, δxy = δyx = 0.2 mm.

The first parameter we cared about is the DOP which
used to describe the portion of an electromagnetic wave
which is polarized. DOP=1 means perfectly polarized
beam while DOP=0 means unpolarized beam.

P (ρ, z, ω) =

√
S2

1(ρ, z, ω) + S2
2(ρ, z, ω) + S2

3(ρ, z, ω)

S
(ρ,z,ω)
0

.

(18)

For different transverse points the changes of DOP
with the propagation distance z under different turbu-
lence conditions have shown in Fig. 1.

Figure 1 intimates that the turbulence effect on varia-
tions of DOP is similar to each other. The transverse co-
ordinate ρ influence the DOP obviously when z < 0.1 km,
but the affection will become weakness when z > 0.1 km.

In order to find out the influence of the source param-
eters on DOP changes, different δxx, δyy of QH beams are
chosen, and the turbulence condition in each sub graph
is set to be same: L0 = 10 m , l0 = 1 mm. The results
are revealed in Fig. 2.

It can be easily found in Fig. 2 that the correla-
tion widths δxx, δyy play crucial part in determining the
change of DOP in turbulence. The value becomes a con-
stant smaller or larger than initial value when z > 106 m
in free space. However, in turbulence, the final value is
equal to initial value. The phenomenon is so called “self-
reconstructed” of polarization properties of QH beams

propagating in turbulence.
The polarization ellipse describes the SOP of the fully

polarized portion of the beam. The azimuth angle θ is
defined by the smallest angle formed by the positive x-
direction and the direction of major semi-axis of the el-
lipse and the value ε is the ratio of major semi-axis and
the minor semi-axis which determines the shape of the
ellipse.

θ(ρ, z, ω) =
1

2
arctan

[
S2(ρ, z, ω)

S1(ρ, z, ω)

]
,

ε(ρ, z, ω) =

1

2
arcsin

[
S3(ρ, z, ω)√

S2
1(ρ, z, ω) + S2

2(ρ, z, ω) + S2
3(ρ, z, ω)

]
.

(19)

Fig. 1. DOP changes with distance of different transverse
points: (a) ρ = 0; (b) 0.02; (c) 0.03; (d) 0.04 m.

Fig. 2. On-axis DOP changes of QH beam with different
source parameters. (a) δxx = 0.3 mm, δyy = 0.3 mm; (b)
δxx = 0.2 mm, δyy = 0.4 mm; (c) δxx = 0.3 mm, δyy = 0.2
mm; (d) δxx = 0.2 mm, δyy = 0.3 mm.
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The changes of θ and ε were plotted in Fig. 3.
According to the results that we have obtained above,
we only considered three turbulence conditions. Just
like the changes of DOP, the changes of transverse SOP
with different turbulence conditions are different for each
transverse position when z <0.1 km, but it become same
to each other when 0.1 km< z < 10 km, at last it will
become constant when z > 103 km.

The variations of polarization ellipses on-axis are
shown in Fig. 3. The difference is very small at z = 1
km but it becomes obviously when the distance increase
to 10 km.

The azimuth angle of polarization ellipses come to two
values: one is in turbulence, the other is in free space.
The length of semi-axis also shows discrimination: the
length of semi-axis decreases much more in turbulence
than free space. We have plotted the polarization ellipses
affected by different turbulence perturbations in Fig. 4.

The source parameters were chosen as: δxx = 0.4 mm,
δyy = 0.2 mm and δxx = 0.2 mm, δyy = 0.4 mm. Be-
cause what we cared about are polarization fluctuations
of QH beams so we neglected the energy attenuation so
the length of semi-axis has been normalized in order to
display SOP variations clearly.

From Fig. 4 we can see that the ellipses vary in at-
mosphere turbulence and free space. The polarization
ellipses under different turbulence conditions get obvi-
ously discrimination in the region of z = 104 to 106 m,
but they will be closer to each other when z > 106 m.
The parameters of source effect the variation importantly
in the region 104 m< z < 106 m and determine the final
ellipses when z > 106 m. Compared Figs. 4(a) and (b),
we can find that the evolution of ellipses are obviously
different because the difference of δxx and δyy. And the
ellipses in Fig. 4(a) seem more stable than the ellipses
in Fig. 4(b) So the ellipses of SOP of QH beams can be
controlled by the choice of source parameters.

In conclusion, we study the changes of the DOP and
the SOP for several source parameters of QH beams
propagating through atmosphere turbulence. Generally,
the DOP and SOP of QH beams are affected by two

Fig. 3. Changes of SOP at different transverse points with
distance ρ of (a) 0; (b) 0.02; (c) 0; (d) 0.02 m.

Fig. 4. Variation of polarization ellipses with distance in
different turbulence models. (a) δxx = 0.4 mm, δyy = 0.2
mm, δxy = δyx = 0.2 mm; (b) δxx = 0.2 mm, δyy = 0.4 mm,
δxy = δyx = 0.2 mm.

mechanisms: one is the transverse position which affect
the changes in the near field; the other is turbulence
perturbation which affect the polarization properties
in the middle field, but both SOP and DOP “self-
reconstructed” to initial value when the beam have prop-
agated a sufficient long distance. Different turbulence
model or turbulence condition has similar affection of
variation. However, in free space, the final values of
these quantities are not same to initial values. At last,
the correlation lengths of QH beams play important rule
in the variations of polarization properties of QH beam
through the propagation. Our work domonstrates the
chosen of source parameters is important in the control
of polarization characteristics of the beam propagation
in turbulence. The results of the letter will help us to use
polarization optical communication or imaging system in
atmosphere.

The work was supported by the National Natural Sci-
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61107011, 61205121.
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